
Fingerprinting Malware Authors

Introductory Case Study of a Chinese APT

The Bad Guys are Winning
• Cybercrime & espionage is the dominant criminal

problem globally, surpassing the drug trade
– Russians made more money last year in banking fraud than the

Columbians made selling cocaine
– Chinese are crawling all over commercial & government networks

• The largest computing cloud in the world is controlled
by Conficker
– 6.4 million computer systems*

– 230 countries
– 230 top level domains globally
– 18 million+ CPUs
– 28 terabits per second of bandwidth

*http://www.readwriteweb.com/cloud/2010/04/the-largest-cloud-in-the-world.php

Humans

• Attribution is about the human behind the
malware, not the specific malware variants

• Focus must be on human-influenced factors

 Binary Human 

Move this way 

We must move our aperture of visibility
towards the human behind the malware

$100.00
per 1000
infections

$10,000+
for 0-day

$1,000+

$1000+

$500+

$5,000
incrm.

Small
Transfers

Exploit
Developer

Bot Vendor

Affiliate
Botmaster

ID Thief

Endpoint
ExploitersPPI

Exploit Pack
Vendor

Drop Man Account
Buyer

Cashier / Mule
Bank Broker

Forger
Country where
account is
physically
located

Wizard

atm

Sells accounts in
bulk

Keep
50%

$50

$5.00
per

Victims

~4% of
bank

customers

A single
operator here
may recruit
100’s of mules
per week

Keep
10%

Country that doesn’t
co-op w/ LE

Secondary

Keep
10%

eGold

$10,000+
for 0-day

Implant
Vendor

Rootkit
Developer

Rogueware
Developer

Back Office
Developer

Payment
system

developer

Intelligence Spectrum

MD5 Checksum
of a single
malware sample

SSN & Missile
Coordinates of the
Attacker

Blacklists

 Nearly Useless Nearly Impossible 

Developer Fingerprints Social Cyberspace
DIGINT

Physical
Surveillance

HUMINT

Sweet Spot
NIDS & HIDS signatures
with long-term viability

Predict the attacker’s
next moves

Blacklists

Signatures

ATTRIBUTION-Derived

Intel Value Window
Lifetime 

IP Address

DNS name

Protocol Install

Hooks

Algorithms

Checksums

Minutes Hours Days Weeks Months Years

Developer
Toolmarks

NIDS sans
address

Rule #1

• The human is lazy
– The use kits and systems to change checksums,

hide from A/V, and get around IDS

– They DON’T rewrite their code every morning

Rule #2

• Most attackers are focused on rapid reaction
to network-level filtering and black-holes
– Multiple DynDNS C2 servers, multiple C2

protocols, obfuscation of network traffic

• They are not-so-focused on host level stealth
– Most malware is simple in nature, and works great

– Enterprises rely on A/V for host, and A/V doesn’t
work, and the attackers know this

Rule #3

• Physical memory is King
– Once executing in memory, code has to be

revealed, data has to be decrypted

DISK FILE

MD5
Checksum

reliable

MD5
Checksum

is not
consistent

IN MEMORY IMAGE

Software
Traits remain

consistent

100% dynamic

Copied in full

Copied in part

O
S

Lo
ad

er
MD5 is

Useless In
memory.

IN MEMORY IMAGE

Software
Traits remain

consistent

O
S

Lo
ad

er

Starting
Malware

Packed
Malware

Packer #1

Packer #2

Decrypted
Original

Physical
memory
tends to

get around
the

‘packing’
problem

DISK FILE

MD5
Checksums
all different

IN MEMORY IMAGE

Software
Traits remain

consistent

O
S

Lo
ad

er

Same
malware

compiled in
three

different
ways

Attribution is Not Hard

• If you can read a packet sniffer, you can
attribute malware
– Yes, this means more people in your organization

can do this

– Focus on strings and human-readable data within
a malware program

– In most cases, code-level reverse engineering is
not required

The Flow of Forensic Toolmarks
(host perspective)

Core ‘Backbone’
Source code

3rd party Source code

Tweaks & Mods

3rd party libraries

Malware

Malware
Developer

Compiler

Runtime
Libraries

Time/Date

Paths

MAC address

Machine

Sample 1

Packing

Encrypting

Obfuscation

Malware 1
Malware 2

Malware 3
Malware 4

Malware 5
Malware ~N

Automation

Many
Variants

Developer Fingerprints

Communications Functions

Developer

Installation & Deployment Method

Command & Control Functions

Compiler Environment

Stealth & Anti-forensic Techniques

Malware

Sample

Packing

Toolkit Fingerprints

Toolkit

Packed
Malware

PPI Affiliate

Machine

IN MEMORY IMAGE

Toolkit traits
are apparent

O
S

Lo
ad

er
Malware
Tookit

Different
Malware
Authors
Using
Same
Toolkit

Packed

Toolkits
can be

detected

Paths

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

Example: Gh0stNet

GhostNet: Dropper
¶üÿÿU‹ìƒìSVW3ÿÿ

MZx90

This progRy. y cannot
be run in DOS mode

Embedded executable
NOTE: Packing is not
fully effective here

UPX!

Packer Signature

GhostNet: Dropper
¶üÿÿU‹ìƒìSVW3ÿÿ

MZx90

This progRy. y cannot
be run in DOS mode

UPX!

Resource Culture Code

0x0804

The embedded executable is tagged
with Chinese PRC Culture code

GhostNet: Dropper
¶üÿÿU‹ìƒìSVW3ÿÿ

MZx90

This progRy. y cannot
be run in DOS mode

UPX!

0x0804

The embedded executable is
extracted to disk. The extracted
module is not packed. PDB path
reveals malware name, E: drive.

MZx90 This program cannot
be run in DOS mode

E:\gh0st\Server\Release
\install.pdb

Embedded PDB Path

For Immediate Defense…

 Useless Human 

MD5 of the Gh0stNet
dropper.EXE

PDB Path found
within extracted
EXE

RawVolume.File.BinaryData

“gh0st\”

Query: “Find Attacker’s PDB Path”

contains

Link Analysis
“gh0st\”

The web reveals Chinese hacker sites that
reference the “gh0st\” artifact

GhostNet: Backdoor

MZx90

UPX!
The dropped EXE is loaded as svchost.exe on the
victim. It then drops another executable, a device
driver.

MZx90 This program
cannot be run
in DOS mode

E:\gh0st\Server\Relea
se\install.pdb

Another embedded EXE

MZx90 MZx90

Another PDB path

e:\gh0st\server\sys\i
386\RESSDT.pdb

Our defense…

Even if we had not known about the second executable, our defense
would have worked. This is how moving towards the human offers

predicative capability.

RawVolume.File.BinaryData

“gh0st\”

Query: “Find Attacker’s PDB Path”

contains

What do we know…
i386 directory is common to device
drivers. Other clues:
1. sys directory
2. ‘SSDT’ in the name

Also, embedded strings in the binary
are known driver calls:
1. IoXXXX family
2. KeServiceDescriptorTable
3. ProbeForXXXX

SSDT means System Service Descriptor
Table – this is a common place for rootkits
and HIPS products to place hooks.

KeServiceDescriptorTable is used when
SSDT hooks are placed. We know this is a
hooker.

What do we know…

IofCompleteRequest, IoCreateDevice,
IoCreateSymbolicLink, and friends are
used when the driver communicates to
usermode. This means there is a
usermode module (a process EXE or DLL)
that is used in conjunction with the device
driver.

When communication takes place
between usermode & kernelmode, there
will be a device path.

For Immediate Defense…

 Useless Human 

MD5 of the Gh0stNet
dropper.EXE

Device Path of the kernel mode driver
and the Symbolic Link name

Physmem.WindowsObject.Name

“RESSDT”

Query: “Find Rootkit Device Path or Symlink”

contains

Link Analysis

A readme file on Kasperky’s site
references a Ressdt rootkit.

“RESSDT”

Forensic Toolmarks
e:\gh0st\server\sys\i386\RESSDT.pdb
e:\job\gh0st\Release\Loader.pdb
.?AVCgh0stDoc@@
.?AVCgh0stApp@@
.?AVCgh0stView@@
Cgh0stView
Cgh0stDoc
e:\job\gh0st\Release\gh0st.pdb
C:\gh0st3.6_src\HACKER\i386\HACKE.pdb
\gh0st3.6_src\Server\sys\i386\CHENQI.pdb

Rootkit

Dropper

GUI (MFC)

Doc/View is
usually MFC

Already at
version 3.6

Rootkits

Case Study: Chinese APT

2004 20102005 20092007

SvcHost.DLL.log

SvcHost.DLL.log

SvcHost.DLL.log &
“bind cmd frist!”

Just “bind cmd frist!”

Timestamps

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

IMAGE DEBUG
DIRECTORY

PE Timestamps
PE file

Image File Header

Optional Header

Module timestamp*
time_t (32 bit)

Debug timestamp
time_t (32 bit)

*This is not the same as NTFS file times, which are
64 bit and stored in the NTFS file structures.

This is present if an external PDB
file is associated with the EXE

The ‘lmv’ command in WinDBG
will show this value..

e_lfanew

Image Data
Directories

Timestamp Formats

• time_t – 32 bit, seconds since Jan. 1 1970 UTC
– 0x3DE03E0A  usually start with ‘3’ or ‘4’

• ‘3’ started in 1995 and ‘4’ ends in 2012

– Use ‘ctime’ function to convert

• FILETIME – 64 bit, 100-nanosecond intervals since
Jan. 1 1600 UTC
– 0x01C195C2.5100E190  usually start with ‘01’ and a

letter
• 01A began in 1972 and 01F ends in 2057

– Use FileTimeToSystemTime(), GetDateFormat(), and
GetTimeFormat() to convert

Case Study: Chinese APT

2004 20102005 2009

3/24/2010 – 7:44 AM
3/29/2010 – 8:16 PM
3/29/2010 – 11:47 PM

2007

9/20/2007 – 5:34 AM

2/9/2010 – 12:29 AM11/17/2009 – 9:03 AM
12/29/2009 – 11:40 PM

12/19/2007 – 7:44 PM

2/22/2005 – 7:35 PM

Compile times extracted from
‘soysauce’ backdoor program.

For Immediate Defense…

 Useless Human 

Compile time

RawVolume.File.CompileTime

3/1/2010

Query: “Find Modules Created Within Attack Window”

>

3/31/2010<

MAC Address

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

GUID V1

• The OSF specified algorithm for GUID V1 uses
the MAC address of the network card for the
last 48 bits of the 128 bit GUID
– This was deprecated on Windows 2000 and

greater, so this has limited value

{21EC2020-3AEA-1069-A2DD-08002B30309D}

V1 GUIDS have a 1 in this position This is the MAC of the machine

This technique was used to track the author of the Melissa virus

Compiler Version

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

Visual Studio

• Static or dynamic linked runtime library?

• Single-threaded or multi-threaded?

• Use of STL?

• Use of older iostream libraries?*

See: * support.microsoft.com/kb/154753

Version Libraries linked with Type Compiler flag

VC++ .NET 2003 and earlier LIBC.LIB, LIBCP.LIB Single Threaded Static
/ML

VC++ .NET 2003 and earlier LIBCD.LIB, LIBCPD.LIB Single Threaded Static
/MLd

All LIBCMT.LIB, LIBCPMT.LIB Multi-threaded Static
/MT

All LIBCMTD.LIB, LIBCPMTD.LIB Multi-threaded Static
/MTd

Visual Studio – Static Linking

Visual Studio – Dynamic Linking

Version DLL Linked with

VC++ 4.2 MSVCRT.DLL/MSVCRTD.DLL

VC++ 5.0 MSVCR50.DLL

VC++ 6.0 MSVCR60.DLL

VC++ .NET 2002 MSVCR70.DLL

VC++ .NET 2003 MSVCR71.DLL

VC++ .NET 2005 MSVCR80.DLL

VC++ .NET 2008 MSVCR90.DLL

Static Linking

• C runtime library strings will be embedded in
the EXE itself, as opposed to being in an
external DLL
– DOMAIN error

– TLOSS error

– SING error

– R6027

Debug Symbols

• Debug timestamp (time_t – seconds since
01.01.1970)

• Version of the PDB file
• NB09 - Codeview 4.10

• NB11 - Codeview 5.0

• NB10 - PDB 2.0

• RSDS - PDB 7.0

• Age – number of times the malware has been
compiled

Name Mangling

Undecorate
Visual C++ demangle:
DWORD WINAPI UnDecorateSymbolName(

__in PCTSTR DecoratedName,
__out PTSTR UnDecoratedName,
__in DWORD UndecoratedLength,
__in DWORD Flags);

Also, see source to winedbg

GNU C++ demangle
see libiberty/cplus-dem.c and include/demangle.h

Delphi

• Give-away strings:

SOFTWARE\Borland\Delphi\RTL

This program must be run under Win32

Delphi

• Uses specific function names – easy to identify

• Language is derived from Pascal

78 hits for pascal, only 2 for c++

Embedded Manifest

• Contains name, description, platform

• Contains list of dependent modules + versions
– May contain key tokens that identify specific

dependent modules (aka strongly named)

• May contain public key that is tied to the
developer if assembly itself is strongly named
– not likely!

– Public/private key pair (sn.exe)

Tracking Source Code

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

Main Functions

• Main
– Same argument parsing

– Init of global variables

– WSAStartup

• DllMain

• ServiceMain

Service Routines

• Install / Uninstall Service

• RunDll32

• Service Start/Stop

• ServiceMain

• ControlService

Skeleton of a service
DllMain()
{

// store the HANDLE to the module in a global variable
}

ServiceMain()
{

// RegisterServiceCtrlHandler & store handle to service in global
variable

// call SetServiceStatus, set PENDING, then RUNNING
// call to main malware function(s)

}

ServiceCtrlHandler_Callback
{

// handle various commands, start/stop/pause/etc
}

Hard coded sleep()
times

dwWaitHint

Sleep loop at end

Size of local
buffer

Skeleton of a service
Main_Malware_Function
{

// do stuff
}

InstallService()
{
// OpenSCManager
// CreateService

}

UninstallService()
{
// OpenSCManager
// DeleteService

}

Service Name

Exception Handling

Registry Keys

Size of local
buffer

Filename Creation

• Log files, EXE’s, DLL’s

• Subdirectories

• Environment Variables

• Random numbers

Case Study: Chinese APT

2004 20102005 2009

2005 posting of similar source code,
includes poster’s handle.

Case Study: Chinese APT
Continued searching will
reveal many, many
references to the base
source code of this
malware.

All malware samples for
this attacker are derived
from this basic framework,
but many additions &
modifications have been
made.

3rd Party SourceCode

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

Format Strings

• These are written by humans, so they provide
good uniqueness

http://%s:%d/%d%04d

Searching for:
-“Unable to determine” &
-“Unknown type!”

Reveals that the attacker is
using the source-code of
BO2k for cut-and-paste
material.

Logging Strings

Mutex Names
Mutex names remain
consistent at least for one
infection-push, as they are
designed to prevent
multiple-infections for the
same malware.

Link Analysis

3rd Party Libraries

Core ‘Backbone’
Sourcecode

3rd party
Sourcecode

Tweaks & Mods

3rd party
libraries

Compiler

Runtime
Libraries

Time

Paths

MAC address

Malware

Developer

Machine

Sample

Packing

Copyright & Version Strings

OpenSSL/0.9.6
RAND part of OpenSSL 0.9.8e 23 Feb 2007
MD5 part of OpenSSL 0.9.8k 25 Mar 2009
libdes part of OpenSSL 0.9.7b 10 Apr 2003
inflate 1.2.1 Copyright 1995-2003 Mark Adler
inflate 1.1.4 Copyright 1995-2002 Mark Adler
inflate 1.2.3 Copyright 1995-2005 Mark Adler
inflate 1.0.4 Copyright 1995-1996 Mark Adler
inflate 1.1.3 Copyright 1995-1998 Mark Adler
inflate 1.1.2 Copyright 1995-1998 Mark Adler
inflate 1.2.2 Copyright 1995-2004 Mark Adler

zlib Fingerprinting

• Every new version of zlib has a unique pattern of
bits in the data tables – these are modified for
each version specifically

• This pattern is a data constant and can be used
even if the copyright notices have been removed

http://www.enyo.de/fw/security/zlib-fingerprint/zlib.db

inflate library patterns

• Not as specific as zlib patterns but can be used
to detect the inflate decompressor

http://www.enyo.de/fw/security/zlib-fingerprint/inflate.db

Installation & Deployment

Communications Functions

Developer

Installation & Deployment Method

Command & Control Functions

Compiler Environment

Stealth & Antiforensic Techniques

Malware

Sample

Packing

Case Study: Chinese APT

2004 20102005 2009

Alters the DLL value of an existing
service named “RemoteRegistry”:

Original ServiceDll value: regsvc.dll
Trojan ServiceDll value: regsvr.dll

Registers a service named “IPRIP”
which operates as a DLL loaded
under svchost.exe

Registers a service named “IPRIP”
which operates as a DLL loaded
under svchost.exe

Command & Control

Communications Functions

Developer

Installation & Deployment Method

Command & Control Functions

Compiler Environment

Stealth & Antiforensic Techniques

Malware

Sample

Packing

Command and Control

SOURCE COMPUTER USERNAMETIMESTAMP

HD SERIAL NUMBER

VICTIM IP ADMIN? OS VERSION

Once installed, the malware phones home…

C&C Hello Message
1) this queries the uptime

of the machine..
2) checks whether it's a

laptop or desktop
machine...

3) enumerates all the
drives attached to the
system, including USB
and network...

4) gets the windows
username and
computername...

5) gets the CPU info... and
finally,

6) the version and build
number of windows.

Command and Control Server

• The C&C system may vary
– Custom protocol (Aurora-like)

– Plain Old URL’s

– IRC (not so common anymore)

– Stealth / embedded in legitimate traffic

• Machine identification
– Stored infections in a back end SQL database

A) Command is stored as a
number, not text. It is
checked here.

B) Each individual
command handler is
clearly visible below the
numerical check

C) After the command
handler processes the
command, the result is
sent back to the C&C
server

Aurora C&C parser

Advanced
Fingerprinting

Offset in
screenshot

Len in bytes Data….

GhostNet: Screen Capture Algorithm

Reads screenshot data, creates a
special DIFF buffer

Loops, scanning every 50th line (cY)
of the display.

LOOP: Compare new screenshot to
previous, 4 bytes at a time

If they differ, enter secondary
loop here, writing a ‘data run’

for as long as there is no
match.

Search source code of the ‘Net

Large grouping of constants

GhostNet: Searching for sourcecode

Further refine the search by including ‘WAVE_FORMAT_GSM610’
in the search requirements…

Has something to do with
audio…

GhostNet: Refining Search

We discover a nearly perfect ‘c’
representation of the disassembled

function. Clearly cut-and-paste.

We can assume most of the audio
functions are this implementation of

‘CAudio’ class – no need for any
further low-level RE work.

GhostNet: Source Discovery

On link analysis…

1. Implant
2. Forensic

Toolmark specific
to Implant

3. Searching the
‘Net reveals
source code that
leads to Actor

4. Actor is
supplying a
backdoor

5. Group of people
asking for
technical
support on their
copies of the
backdoor

Example: Link Analysis with Palantir™

Working back the timeline

• Who sells it, when did that capability first
emerge?
– Requires ongoing monitoring of all open-source

intelligence, presence within underground
marketplaces

– Requires budget for acquisition of emerging
malware products

Conclusion

Takeaways

• Actionable intelligence can be obtained from
malware infections for immediate defense:
– File, Registry, and IP/URL information

• Existing security doesn’t stop ‘bad guys’
– Go ‘beyond the checkbox’

• Adversaries have intent and funding
– Failure is hiccup – doesn’t stop mission

• Need to focus on the criminal, not malware
– Attribution is possible thru forensic toolmarking

combined with open and closed source intelligence

Continued Work

• Will be presenting additional research at
BlackHat Vegas this year
– Trend over 500k malware samples

• HBGary will be releasing a free tool that will
dump fingerprint information from a binary or
livebin

Fingerprint Utility

Developer Fingerprint Utility, Copyright 2010 HBGary, INC
File: 1228ad2e39befa4319733e98d8ed2890.livebin

Original project name: RESSDT
Developer's project directory: e:\gh0st\server\sys\i386
Compiler: Microsoft Visual C++ 6.0 release

User interface: Windows GDI/Common Controls
Media: Windows multimedia API
Media: Microsoft VfW (Video for Windows)
Compression: Inflate Library version: 1.1.4
Networking: Windows sockets (TCP/IP)
Networking: Windows Internet API

Source directory: e:\gh0st\server\sys\i386

Thank You

• HBGary, Inc. (www.hbgary.com)

• HBGary Federal (www.hbgaryfederal.com)

	�Fingerprinting Malware Authors
	The Bad Guys are Winning
	Humans
	Slide Number 4
	Intelligence Spectrum
	Slide Number 6
	Rule #1
	Rule #2
	Rule #3
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Attribution is Not Hard
	The Flow of Forensic Toolmarks�(host perspective)
	Developer Fingerprints
	Toolkit Fingerprints
	Slide Number 17
	Paths
	Example: Gh0stNet
	GhostNet: Dropper
	GhostNet: Dropper
	GhostNet: Dropper
	For Immediate Defense…
	Link Analysis
	GhostNet: Backdoor
	Our defense…
	What do we know…
	What do we know…
	For Immediate Defense…
	Link Analysis
	Forensic Toolmarks
	Case Study: Chinese APT
	Timestamps
	PE Timestamps
	Timestamp Formats
	Case Study: Chinese APT
	For Immediate Defense…
	MAC Address
	GUID V1
	Compiler Version
	Visual Studio
	Slide Number 42
	Static Linking
	Debug Symbols
	Name Mangling
	Undecorate
	Delphi
	Delphi
	Embedded Manifest
	Tracking Source Code
	Main Functions
	Service Routines
	Skeleton of a service
	Skeleton of a service
	Filename Creation
	Case Study: Chinese APT
	Case Study: Chinese APT
	3rd Party SourceCode
	Format Strings
	Logging Strings
	Slide Number 61
	Mutex Names
	Link Analysis
	3rd Party Libraries
	Copyright & Version Strings
	zlib Fingerprinting
	inflate library patterns
	Installation & Deployment
	Case Study: Chinese APT
	Command & Control
	Command and Control
	C&C Hello Message
	Command and Control Server
	Aurora C&C parser
	Slide Number 75
	GhostNet: Screen Capture Algorithm
	GhostNet: Searching for sourcecode
	GhostNet: Refining Search
	GhostNet: Source Discovery
	Slide Number 80
	Example: Link Analysis with Palantir™
	Working back the timeline
	Slide Number 83
	Takeaways
	Continued Work
	Fingerprint Utility
	Thank You

